Laccase and its role in production of extracellular reactive oxygen species during wood decay by the brown rot basidiomycete Postia placenta.

نویسندگان

  • Dongsheng Wei
  • Carl J Houtman
  • Alexander N Kapich
  • Christopher G Hunt
  • Daniel Cullen
  • Kenneth E Hammel
چکیده

Brown rot basidiomycetes initiate wood decay by producing extracellular reactive oxygen species that depolymerize the structural polysaccharides of lignocellulose. Secreted fungal hydroquinones are considered one contributor because they have been shown to reduce Fe(3+), thus generating perhydroxyl radicals and Fe(2+), which subsequently react further to produce biodegradative hydroxyl radicals. However, many brown rot fungi also secrete high levels of oxalate, which chelates Fe(3+) tightly, making it unreactive with hydroquinones. For hydroquinone-driven hydroxyl radical production to contribute in this environment, an alternative mechanism to oxidize hydroquinones is required. We show here that aspen wood undergoing decay by the oxalate producer Postia placenta contained both 2,5-dimethoxyhydroquinone and laccase activity. Mass spectrometric analysis of proteins extracted from the wood identified a putative laccase (Joint Genome Institute P. placenta protein identification number 111314), and heterologous expression of the corresponding gene confirmed this assignment. Ultrafiltration experiments with liquid pressed from the biodegrading wood showed that a high-molecular-weight component was required for it to oxidize 2,5-dimethoxyhydroquinone rapidly and that this component was replaceable by P. placenta laccase. The purified laccase oxidized 2,5-dimethoxyhydroquinone with a second-order rate constant near 10(4) M(-1) s(-1), and measurements of the H(2)O(2) produced indicated that approximately one perhydroxyl radical was generated per hydroquinone supplied. Using these values and a previously developed computer model, we estimate that the quantity of reactive oxygen species produced by P. placenta laccase in wood is large enough that it likely contributes to incipient decay.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental method to (quantify progressive stages of decay of wood by basidiomycete fungi

A biological exposure method was developed that allows wood samples to be progressively removed for monitoring colonization and decay by basidiomycete fungi. Monitoring involves strength tests, determination of weight loss, and chemical analysis. To optimize the procedure, several variations of the method were tested using two species of brown-rot fungi (Gloeophyllum trabeum and Oligoporus plac...

متن کامل

Decay mechanisms of brown-rot fungi

Brown-rot fungi, e.g. the dryrot fungus (Serpula lacrymans), are the most harmful microorganisms in wood in service in Finland and in temperate regions. Brownrot fungi cause wood decay primarly by attacking the carbohydrates of the cell walls, leaving lignin essentially undigested. At the initial stage of the decay, the brown-rot fungi seem to operate by a mechanism which cause extensive change...

متن کامل

Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium.

Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi cultured for 5 days in media co...

متن کامل

Localizing gene regulation reveals a staggered wood decay mechanism for the brown rot fungus Postia placenta.

Wood-degrading brown rot fungi are essential recyclers of plant biomass in forest ecosystems. Their efficient cellulolytic systems, which have potential biotechnological applications, apparently depend on a combination of two mechanisms: lignocellulose oxidation (LOX) by reactive oxygen species (ROS) and polysaccharide hydrolysis by a limited set of glycoside hydrolases (GHs). Given that ROS ar...

متن کامل

Pectin degradation during colonization of wood by brown-rot fungi

Brown-rot decay results in rapid reduction in degree of polymerization of holocellulose, with concomitant strength loss without removing lignin. Development of new methods of wood protection will require focusing on early events in the sequence of fungal attack during colonization. Pit membranes (sapwood) of wood cell walls represent a readily available source of nonlignified carbohydrate, i.e....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 76 7  شماره 

صفحات  -

تاریخ انتشار 2010